P8.5-8) A bicyclist builds up speed until she is traveling at $v_1 = 20$ mph. At this point, she coasts down a $\theta = 10^{\circ}$ hill. After covering a distance of d = 0.25 mile, her speed reaches $v_2 = 35$ mph. Assuming that the wheels don't slip, determine the amount of non-conservative work done on the bike-rider system. Assume that the wheel may be approximated as rings (i.e. $I_G = mr^2$). The rider, frame and wheels weigh $W_{rider} = 130 \text{ lb}$, $W_{frame} = 2 \text{ lb}$ and $W_{wheel} = 1 \text{ lb}$, respectively. The wheel radius is r = 350 mm.

Given:

Find:

Solution	
Write down the work-energy balance equation and Indicate which terms will go to zero.	Determine the change in potential energy of the system.
Calculate the mass moment of inertia of the wheel with respect to its center of mass.	$\Delta V =$ Determine the kinetic energy of the system.
	What is the change in kinetic energy of the rider and frame?
<i>I_{wheel}</i> =	$\Delta T = $

What is the change in kinetic energy of the wheels?

Use the work-energy balance equation to determine the non-conservative work.
